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Introduction 
• Rocket propulsion technology/performance drives 

space exploration and science missions 
• Liquid, solid and hybrid rocket propulsion involves 

complex physics & flow operating conditions 
• Computational modeling – an cost-effective design 

approach in modern propulsion system developments 
for combustion efficiency optimization and system 
integrity verification 

• Very useful diagnostic tool in hot-fire experimental 
investigations 

• Critical design analysis issues: 
– Real-fluid properties (suitable for sub- and super-critical 

combustion conditions) 
– Accurate transient reacting flow with high fidelity thermal 

modeling 
– Realistic flexible wall boundaries – fluid-structure interactions 
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Numerical Approach 
• Governing Equations: Navier-Stokes with turbulence, finite-

rate chemistry, real-fluid, particulate two-phase flow, 
radiation models 

• Pressure-based all-speed formulation with unstructured grid 
finite-volume method and parallel computing capability 

• Transient rocket engine flow validated and developing fluid-
structure interaction capabilities 

Flow Solver 
Governing 
Equations 



6 

Numerical Approach 
• Numerical Scheme: Predictor plus correctors 2nd-order time 

marching scheme with TVD shock capturing limiter for the 
convection terms and central scheme for other terms of the 
transport equations 

• VLES (Very Large-Eddy Simulation) based on the extended 
2-eq turbulence model (Chen & Kim, 1987) 
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Numerical Approach 
• Real-fluid thermodynamics properties for O2, H2, N2, N2O, 

H2O2+water, RP-1, etc. 
• HBMS equations of state: (Hirschfelder, Buehler, McGee, Sutton) 

ρc: critical density, Zc: compressibility at the critical condition 
H: real-fluid enthalpy, H0: ideal-gas enthalpy 
Bij: coefficients of the thermal property polynomial 

N2O Thermodynamics Data 
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O2 

H2 

Numerical Approach 
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N2 

RP-1 

Numerical Approach 
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Numerical Approach 
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Hybrid: N2O-HTPB 
16 Species: C4H6, C2H4, O2, H2O, O, H, 

OH, HO2, H2, CO, CO2, N, 
N2, N2O, NO, NO2 

29 Reactions: 

12 Species: C4H6, C2H4, O2, H2O, O, H, 
OH, HO2, H2, CO, CO2, 
H2O2 

27 Reactions: 

Hybrid: H2O2-HTPB 

Liquid: LOX-LH2 

Liquid: LOX-PR-1 

8 Species, 9 Reactions 

10 Species, 17 Reactions, with soot formation 

• Reacting flow model: finite-rate chemistry with point-implicit  
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Numerical Approach 
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 Aeroelastic Equation of Motion 
 

 Generalized Transformation 

 

 Generalized Equation of Motion (Rayleigh Damping Assumed) 

 

 N equations are solved for N structural modes 

• Fluid-structure interaction modeling:  

1. Flow Solver 

2. Structural Dynamics Solver 

3. Boundary Displacement and Moving-Grid Re-meshing 

4. Iterative Close Coupling for Each Time Step 
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Numerical Model Validations 
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Re = 100 Re = 600 

Re = 1000 

 Transient flow simulations: 
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Numerical Model Validations 
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 Reacting Hot Flow, Re = 350 
 6 Species, 9 Reactions 
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Numerical Model Validations 
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 Mascotte RCM-2 LOX/GH2 Combustion (DLR, 2001) 
 Predicted Flame Shape closely resembles Abel-Transformed 

Emission Image from Experiment 
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Numerical Model Validations 
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 Start-up Transient Flow Simulations for J-2X and SSME Engines 
 FSS and RSS Patterns and Side Forces Predicted 
 Fluid-Structure Interaction Simulated 
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Rocket Engine Design Applications 
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• Hybrid Rocket Engine Development 
 Axial Single Port with Mixing Enhancers Design Cases 

 300 and 1000 kgf Thrust Levels Hybrid Combustion Chamber design 
with a Pintle Injector 

 N2O Oxidizer and HTPB Solid Fuel which decomposes into roughly 
70% C4H6 and 30% C2H4  

 Single and multiple rows of Mixing Enhancers 
 Number of computational cells: 5.2 millions 

(US Patent, 2014) 



17 17 

Throat diameter: 56 mm 
Expansion ratio: 7 

Case 1 
L: 841 mm 

L: Port Length 

Case 2 
L: 748 mm 

Case 3 
L: 561 mm 

Case 4 
L: 400 mm 

Rocket Engine Design Applications 
• Hybrid Rocket Engine Development 
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Chamber 
Pressure 

(bar) 

Thrust 
(kgf) 

ISP 
(sec) 

Mass Flow 
Rate 

(kg/sec) 

C*  
(m/s) 

O/F 
Ratio 

Case 1 
L841 mm 

28.07  1124.9 256  4.39 1579.0 8.13  

Case 2 
L748 mm 

28.44  1126.2 257  4.38 1604.3 8.38  

Case 3 
L561 mm 

27.96  1122.0 258  4.35 1589.2 12.49  

Case 4 
L400 mm 

27.69  1112.9 245  4.54 1506.8 16.58  

Rocket Engine Design Applications 
• Hybrid Rocket Engine Development 
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 Baseline single-port design: 

 Vacuum Isp of experiment = 187.2 s 

 Calculated vacuum Isp      = 191.4 s (2-D), 190.8 s (3-D) 

 Modified design with 1-stage mixing enhancers: 

 Vacuum Isp of experiment = 222.2 s 

 Calculated vacuum Isp      = 223.8 s (3-D) 

 1000 kgf design with 2-stage mixing enhancers: 

 Vacuum Isp of experiment = 256.5 s (748 mm Port Length) 

 Calculated vacuum Isp      = 257.3 s (3-D)  

Rocket Engine Design Applications 
• Hybrid Rocket Engine Development 
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 Cases Investigated:  
 Base line dual vortical-flow chamber model 

 Oxidizer injection systems 

 Upper-stage high-altitude hybrid rocket propulsion for 700 kgf, 
1,000 kgf and 4,500 kgf thrust levels 

 Dual and quad vortical-flow chambers 

Rocket Engine Design Applications 
• Hybrid Rocket Engine Development 

(US Patent Pending) 
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 Stream traces show the effects of increased residence time along 
the HTPB surfaces 

 High flow turning and counter-rotation high shear stress effects 

Fwd-Disk-Chamber Stream Traces Aft-Disk-Chamber Stream Traces 

Rocket Engine Design Applications 
• Hybrid Rocket Engine Development 
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 Summary of different thrust level cases (nozzle expansion area 
ratio of 25) 

 O/F ratios are on the high side due to low regression rate of HTPB 
 Vacuum Isp around 291~292 sec for these cases 
 Indicating overall combustion efficiency over 0.95 (Theoretical 

vacuum Isp for these cases is 305 sec) 

Thrust 
(N / Kgf) 

N2O Flow Rate 
(kg/s) 

HTPB Flow Rate 
(kg/s) 

O/F Vacuum Isp 
(sec) 

7096.9 / 724.2 2.2646 0.2217 10.2 291.3 

10,706.2 / 1092.5 3.4258 0.3143 10.9 292.1 

44,754.5 / 4,566.7 14.3977 1.2739 11.3 291.4 

Rocket Engine Design Applications 
• Hybrid Rocket Engine Development 
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 Performance comparisons of dual-vortical-flow and quad-vortical-
flow chambers (nozzle expansion = 23) 

Dual-Vortical-Flow Chamber Quad-Vortical-Flow Chamber 
Chamber 

Design 
Thrust 
(kgf) 

Propellant Flow Rate 
(kg/sec) 

O/F Vacuum Isp 
(sec) 

C* 
(m/sec) 

DVF 1,146.7 4.00 9.48 286 1653.37 
QVF 2,299.4 7.99 9.67 288 1681.86 

Rocket Engine Design Applications 
• Hybrid Rocket Engine Development 



24 

• Dual-vortical-flow designs provide good thrust performance for HTPB 
hybrid Systems 
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Space Shuttle SRB 
Ariane 5 SRB 
Minuteman Missile  

Shuttle SSME 
Ariane 5 Vulcain 

Titan  

LOX/PR1 Ideal 
Falcon 9 Stage-II 

Kistler Stage-II 
Saturn V F1  

LOX/HTPB Ideal 
N2O/HTPB Ideal  

Rocket Engine Design Applications 
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N2O Tank 
(400 L) 

Load Cell Test Stand 

Combustion 
Chamber 

Rocket Engine Design Applications 
• Hybrid Rocket Engine Development 
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Hybrid Engine Hot-Fire and Flight Test 
(1000 kgf Thrust Level) 

Rocket Engine Design Applications 
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Conclusions 

• A multiphysics CFD model is presented with benchmark 
validations for liquid and hybrid rocket design 
applications 

• Real-fluid property model has been demonstrated to be 
very important in accurate descriptions of the 
combustion physics in rocket propulsion systems 

• Fluid-structure interaction modeling for rocket engine 
start-up and shutdown transients will provide more 
realistic simulations 

• Application of the present model in hybrid rocket engine 
developments has shown cost-effective designs for 
improving combustion efficiency and the overall thrust 
performance 
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THE END 
Thanks for your attention 
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Hybrid Engine Hot-Fire and Flight Test 
(1000 kgf Thrust Level) 

2014.3.23 HTTP-3S Despin Flight Test 

Rocket Engine Design Applications 
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